Potentiality of halloysite nanoclay on crashworthiness performance of polymer composite tubular elements

Author:

Abd El-baky Marwa A1ORCID,Hegazy Dalia A2,Hassan Mohamad A1,Kamel Madeha3

Affiliation:

1. Mechanical Design and Production Engineering Department, Zagazig University, Zagazig, Egypt

2. Bilbeis Higher Institute of Engineering (BHIE), Bilbeis, Sharqia, Egypt

3. Mechanical Engineering Department, Suez Canal University (SCU), Ismailia, Egypt

Abstract

The recent article investigates the impact of the presence of halloysite nanoclay (HNC) on crashworthiness performance of glass/epoxy energy absorbent composite tubes. Specimens filled with 0,1,2,3, and 4 wt. % of HNC were manufactured via wet-wrapping process and tested under quasi-static axial loadings. The crush load-displacement response, initial crushing load [Formula: see text], average crushing load ([Formula: see text]), crushing force efficiency ( CFE), absorbed energy ( U), and specific absorbed energy ( SEA) for the proposed composites were determined. The crushing behaviors for all specimens were traced. It was indicated that the specimens’ failure mechanisms and the energy absorption capacities of nanofilled glass/epoxy composites are highly dominated by the wt. % of the embedded HNC. The inclusion of HNC enhances the energy absorbing capacities of glass/epoxy composites during the crushing process. Composite tubes filled with 4 wt. % of HNC has the highest load carrying and energy absorption capacities which are, respectively, 32.75 kN and 1110.84 J. So, they are the most suitable materials for energy dissipating elements. The inclusion of 1, 2, 3, and 4 wt. % of HNC to glass/epoxy composite tubes exhibits, respectively, an enhancement of 8.56, 35.76, 37.96, and 53.33% in [Formula: see text] and an enhancement of 169.29, 215.76, 204.60, and 254.19% in the [Formula: see text]. Also, an improvement in the energy absorbing by, respectively, 220.43, 270.09, 249.11, and 320.98% was attended. The purpose of this work is to experimentally study the applicability of HNC in the energy dissipating composite tubular elements.

Publisher

SAGE Publications

Subject

Materials Chemistry,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3