Affiliation:
1. State Key Laboratory of Fluid Power and Mechatronic System, School of Mechanical Engineering, Zhejiang University, China
2. Key Laboratory of Advanced Manufacturing Technology of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, China
Abstract
In composite manufacturing, large composite parts usually exhibit high heating gradients during the autoclave process, which may intensify the process-induced residual stresses and deformations. As the thermal behavior of molds is of crucial importance to the curing performance of composites, a heat-balance method is presented to reduce the heating rate on overheated areas of molds, thus providing a more homogeneous curing process. The method is based on a local-isolation structure installed under the mold plate, which is used to change the local heat transfer coefficient of the mold. In the local-isolation structure application, an optimization process combining numerical simulations with a greedy genetic algorithm is developed to find the optimal layout and geometry of local-isolation structure in molds. The optimization results suggest that more uniform heating condition and more synchronous curing process can be achieved with the optimal design of local-isolation structure. In the case of a typical mold for C spar component, the maximum temperature difference in the composite part is reduce by 45.69%, while the maximum difference in degree of cure is decreased at a rate of 40.16%.
Funder
Ministry of Industry and Information Technology of the People's Republic of China
Fundamental Research Funds for the Central Universities
National Natural Science Foundation of China
Subject
Materials Chemistry,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献