Investigation of self-heating and damage progression in woven carbon fibre composite materials, following the fibres direction, under static and cyclic loading

Author:

Muller Laura1ORCID,Roche Jean-Michel1,Hurmane Antoine1,Leroy François-Henri1,Peyrac Catherine2,Gornet Laurent3

Affiliation:

1. DMAS, ONERA, Université Paris Saclay, France

2. CETIM, FCM, France

3. Ecole Centrale de Nantes, France

Abstract

Infrared thermography is commonly used as a non-destructive testing technique for damage monitoring of composite materials under mechanical loadings. Self-heating tests consist in monitoring the stabilized heating of a material submitted to cyclic loading for increasing values of stress level. It appears that the load threshold from which the thermal behaviour changes can be related to the fatigue limit of the tested material. In this paper, this stress threshold is compared to the heating of a woven thermoplastic composite material submitted to a monotonic tensile test. Indeed, during a quasi-static tensile test, the material temperature cools down, due to thermoelastic effect, before warming up again, due to both viscous effects and first damage evolutions. The comparison, which is made for the warp direction only, is also based on microscopic optical scanning of the specimen edge and passive acoustic monitoring. It is shown that thermal changes detected in the composite samples are associated with damage occurring under both static and cyclic loading, for similar stress levels. This result indicates that the static tests make it possible to estimate a damage threshold, therefore a potential fatigue limit, even faster than with self-heating tests, which opens very promising prospects as for the determination of the fatigue limit of woven composite materials reinforced by carbon fibre yarns.

Publisher

SAGE Publications

Subject

Materials Chemistry,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3