Affiliation:
1. Ingram School of Engineering, Texas State University-San Marcos, USA
2. Department of Mechanical Engineering, University of Texas at Austin, USA
Abstract
The broader goal of this research is to develop a commercially viable material system and manufacturing method to mass produce functional parts using selective laser sintering, a rapid manufacturing method, for electrostatic charge dissipation applications. The specific objective of this research is to produce and characterize polyamide 11/ nanographene platelets nanocomposites that have improved electrical conductivity for electrostatic charge dissipation applications and better thermal stability to be used in selective laser sintering manufacturing. Polyamide 11 and nanographene platelets were blended using industry size co-rotating twin-screw extrusion. Four batches were prepared containing 1 wt%, 3 wt%, 5 wt% and 7 wt% of nanographene platelets. Microsctrucre of nanocompoistes was studied using scanning electron microscopy. Thermal characterization of nanocomposites was conducted using thermogravimetric analysis at three heating rates 5, 20, 40℃/min. Electrical resistivity was measured using the Hioki Megaohmmeter Instrument four probe method. Mechanical characterization includes tensile, flexure, and Izod-impact properties. Flammability property was measured using UL94 test.
Subject
Materials Chemistry,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites
Cited by
31 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献