Analytical hybrid effect prediction and evolution of the tensile response of unidirectional hybrid fibre-reinforced polymers composites for civil engineering applications

Author:

Ribeiro Filipe1,Sena-Cruz José2ORCID,Branco Fernando G3,Júlio Eduardo1,Castro Fernando4

Affiliation:

1. Instituto Superior Técnico, University of Lisbon, Portugal

2. ISISE/IB-S, Department of Civil Engineering, University of Minho, Portugal

3. ISISE, Department of Civil Engineering, University of Coimbra, Portugal

4. Department of Mechanical Engineering, University of Minho, Portugal

Abstract

The performance of a progressive damage model in quantitative hybrid effect prediction of a comprehensive set of different 16 unidirectional interlayer (layer-by-layer) hybrid composites was assessed. Composites, produced by the hand lay-up method, made out of four different commercially available dry unidirectional fabric materials, namely high-modulus carbon, standard carbon, E-glass and basalt, were tested. Tensile tests on single fibres were performed in order to determine their Weibull strength distribution parameters, which were used as inputs of the progressive damage model. Reasonably good agreement between analytical and experimental hybrid effect results was obtained, which allowed to estimate satisfactorily the reference strengths of the unidirectional low strain composite materials. Next, an existing analytical model for the simulation of stress–strain curve of hybrid composites was adapted to contemplate the hybrid effect, which allowed to predict the following properties of unidirectional hybrid combinations: ‘yield’ stress (or pseudo-yield stress), pseudo-ductile strain and strength. It was verified as well that predictions of the three properties referred to were in close agreement with the test results. Finally, damage mode maps were used in the analysis of these properties and, furthermore, of the hybrid effect and the elastic modulus of hybrid combinations.

Publisher

SAGE Publications

Subject

Materials Chemistry,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3