Electro-thermal and mechanical performance of multi-wall carbon nanotubes buckypapers embedded in fibre reinforced polymer composites for ice protection applications

Author:

Zangrossi Francesco1ORCID,Xu Fang1,Warrior Nick1,Karapappas Petros2,Hou Xianghui1

Affiliation:

1. Faculty of Engineering, University of Nottingham, UK

2. Meggitt Airframe Systems Division, UK

Abstract

Several ice protection strategies have been developed to overcome the icing hazards in the aerospace industry. The electro-thermal method is one of the popular approaches to prevent ice accretion and accumulation on aircraft surfaces. Given the increasing requirement of composites on aircraft structures, metal frameworks/fibre-reinforced composites have been developed as a de-icing solution for the new generation aircraft. The present work aimed to fabricate self-heating multi-wall carbon nanotubes based composites for ice protection and to study their electro-thermal and mechanical characteristics. Carbon nanotube buckypapers (CNPs) were prepared and embedded in fibre reinforced polymer composites by two methods: pre-preg and resin impregnation. The influence of the carbon nanotube network structure on the mechanical properties and electrical characteristics of the composites was evaluated. Mechanical tests, three-point flexural test and interlaminar shear strength test demonstrated improved mechanical characteristics of the CNP based composites. De-icing performance of the composites was conducted through a heating test in a climate chamber at −20℃. The results indicated that the CNP-based composite is a promising self-heating material candidate for ice protection systems.

Funder

Marie Curie Initial Training Networks

Publisher

SAGE Publications

Subject

Materials Chemistry,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

Reference26 articles.

1. U.S. Department of Transportation FAA. Aviation maintenance technician handbook, Washington, DC: U.S. Department of Transportation FAA, 2012, pp. 1–2.

2. Aircraft icing

3. A review of surface engineering issues critical to wind turbine performance

4. On the problem of icing for modern civil aircraft

5. Anti-icing and de-icing techniques for wind turbines: Critical review

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3