Enhanced stress concentration sensitivity of SiCp/Al composite with network architecture

Author:

Gao Xiang12,Zhang Xuexi1ORCID,Qian Mingfang1,Li Aibin1,Wang Guisong1,Geng Lin1,Peng Hua-Xin2

Affiliation:

1. School of Materials Science and Engineering, Harbin Institute of Technology, China

2. School of Materials Science and Engineering, Institute for Composites Science Innovation (InCSI), Zhejiang University, Hangzhou, China

Abstract

For network architecture design, stress concentration sensitivity caused by particle shape may change, which is rarely studied. Here, the particle shape dependent stress concentration and its effect on the deformation, fracture, and mechanical properties were investigated. Three particle shapes including hexahedron, twenty-six face polyhedron, and sphere were utilized to generate different stress distribution states in the matrix. A numerical composite model showing network architecture (like grain boundary) was applied. A strong correlation between particle shape, stress concentration factor ( R SiC), and mechanical properties of network composite was built. The particle shape affected the load-bearing capability due to the stress concentration state generated at particle edges. Near the yield point, hexahedron particle wall parallel to the load direction (PaW) was more effective in carrying loads (∼1000 MPa) than that of twenty-six face polyhedron (750–1000 MPa) and sphere (600–1000 MPa) particles. In network composites reinforced by different shape particles, the main crack always initiated in perpendicular network walls (PeW), but propagated along different paths: in Al matrix for hexahedron particle, along macro-interface of SiC/Al–Al for twenty-six face polyhedron particle, and in PeW for sphere particle. Such crack propagation manners contributed to the different elongations of network composites by various particle shapes: sphere > twenty-six face polyhedron > hexahedron particles. Selection of round particle and adjustment of local volume fraction improved elongation with a sacrifice of modulus and strength.

Funder

National Natural Science Foundation of China

Key-Area Research and Development Program of Guangdong Province

National Key R&D Program of China

Publisher

SAGE Publications

Subject

Materials Chemistry,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3