The manufacture and characterization of composite three-dimensional re-entrant auxetic cellular structures made from carbon fiber reinforced polymer

Author:

Wang Xin-Tao1,Chen Yun-Long1,Ma Li1

Affiliation:

1. Center for Composite Materials, Harbin Institute of Technology, PR China

Abstract

In recent years, three-dimensional auxetic structures have attracted great interest. Generally, three-dimensional auxetic structures are of complicate geometries which make them difficult to fabricate, benefiting from the development of additive manufacturing technologies, many three-dimensional auxetic structures can be made from metals or polymers. However, to the authors' knowledge, the additive manufacturing technology of fiber reinforced polymer is not fully developed, and none three-dimensional auxetic structure made from fiber reinforced polymer has been reported before. To integrate the high specific stiffness, high specific strength, and light weight merits of high-performance fiber reinforced polymer composites into three-dimensional auxetic structures with unique properties, research on composite three-dimensional auxetic structures made from fiber reinforced polymer should be conducted. This paper presents the composite three-dimensional re-entrant auxetic structures made from carbon fiber reinforced polymer laminates using an interlocking assembly method. The auxetic nature of the composite structure has been verified by experimental testing and finite element simulations. Based on the finite element models, the dependences of the Poisson's ratio and effective compression modulus of the composite auxetic three-dimensional re-entrant structure on the re-entrant angle have been studied and compared to metal three-dimensional re-entrant structure. A comparative study of the Poisson's ratio and specific stiffness of carbon fiber reinforced polymer composite auxetic structure with the three-dimensional printed polymer and metal auxetic structures in literature has also been conducted.

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Materials Chemistry,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3