Selective maintenance optimization for random phased-mission systems subject to random common cause failures

Author:

Jia Xisheng1,Cao Wenbin12ORCID,Hu Qiwei1

Affiliation:

1. Department of Management Engineering, Mechanical Engineering College, Shijiazhuang, P.R. China

2. Department of Service Support, Command College of People’s Armed Police, Tianjin, P.R. China

Abstract

In both industrial and military fields, there is such a kind of complicated system termed as phased-mission system, which executes missions composed of several different phases in sequence. The structure, failure behavior, and working conditions of such a system may change from phase to phase. The duration of each phase of such a system involved is random and follows a probability distribution, and the system may suffer some events resulting in simultaneous failures of different elements with different probabilities. In order to guarantee such a system completes the phased-mission successfully, a selective maintenance model for random phased-mission systems subject to random common cause failures is proposed to optimally identify a subset of maintenance activities to be performed on some elements of the system. Thereinto, a novel analytic model is developed to estimate the probability of the maintained random phased-mission system successfully completing the phased-mission, and we compare it with a well-known Monte Carlo Simulation approach. Finally, the proposed selective maintenance model has been successfully applied to an artillery weapon system. Comparative analysis is carried out to compare the proposed model with the traditional ones, including selective maintenance models for deterministic phased-mission systems and deterministic single-phase mission systems. The results show that ignoring some mission properties (e.g. randomness and multiple phases) in selective maintenance optimization will lead to (1) incorrect system and mission modeling, (2) incorrect computation of the probability of the random phased-mission system successfully completing a mission, and/or (3) nonoptimal selective maintenance options.

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Safety, Risk, Reliability and Quality

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3