Applications of deep learning in big data analytics for aircraft complex system anomaly detection

Author:

Ning Shungang1,Sun Jianzhong1ORCID,Liu Cui1,Yi Yang1

Affiliation:

1. Nanjing University of Aeronautics and Astronautics, Nanjing, China

Abstract

Big data analytics with deep learning approach have attracted increasing attention in transportation engineering, involving operations, maintenance, and safety. In commercial aviation sectors, operational, and maintenance data produced on modern aircraft is increasing exponentially, and predictive analysis of these data is an exciting and promising field in aviation maintenance, which has a potential to revolutionize aerospace maintenance industry. This study illustrates the state-of-the-art applications of deep learning in big data analytics for predictive maintenance and a real-world case study for commercial aircraft. A Long Short-Term Memory network based Auto-Encoders (LSTM-AE) is proposed for complex aircraft system fault detection and classification, which makes use of the raw time-series data from heterogeneous sensors. The proposed method uses nominal time-series samples corresponding to healthy behavior of the system to learn a reconstruction model based on LSTM-AE framework. Then the system health index (HI) and fault feature vectors are derived from the reconstruction error matrix for fault detection and classification. The proposed method is demonstrated on a real-world data set from a commercial aircraft fleet. The typical PCV faults as well as the 390 F sensor and 450 F sensor faults due to sense line air leakage are successfully detected and distinguished based on the extracted features. The case study results show that the computed HI can effectively characterize the health state of the aircraft system and different fault types can be identified with high confidence, which is helpful for line fault troubleshooting.

Funder

national natural science foundation of china

Publisher

SAGE Publications

Subject

Safety, Risk, Reliability and Quality

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. POSSIBLE APPLICATIONS OF ARTIFICIAL INTELLIGENCE ALGORITHMS IN F-16 AIRCRAFT;Scientific Journal of Silesian University of Technology. Series Transport;2024-06-30

2. A Monitoring Model for Abnormal Electricity Consumption Based on K-Means++ Clustering and Improved K-Nearest Neighbor Algorithm;Smart Grids and Sustainable Energy;2024-06-27

3. Updating aircraft maintenance education for the modern era: a new approach to vocational higher education;Higher Education, Skills and Work-Based Learning;2024-06-11

4. Comprehensive Analysis of Advanced Display and Control Systems for eVTOL Aircraft;2024 6th Global Power, Energy and Communication Conference (GPECOM);2024-06-04

5. An Innovative Deep Architecture for Flight Safety Risk Assessment Based on Time Series Data;Computer Modeling in Engineering & Sciences;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3