Affiliation:
1. Department of Applied Mathematics, Indian Institute of Technology (Indian School of Mines), Dhanbad, India
2. Department of Industrial & Systems Engineering, Rutgers University, Piscataway, NJ, USA
Abstract
Software reliability growth models have been proposed to assess and predict the reliability growth of software, remaining number of faults, and failure rate. In previous studies, software faults have been mainly categorized into two categories based on its severity in removal process: simple faults and hard faults. In reality, fault detectability is one of the crucial factors which can influence the reliability growth of software. The detectability of a software fault depends on how frequently the instructions containing faults are executed. However, fault removability of a software fault depends on fault removal efficiency of debugging team. The main motive of this article is to incorporate the fault detectability in software reliability assessment. Fault exposure ratio is an essential factor for software reliability modeling that controls the per-fault hazard rate. It is strongly dependent on fault detectability. In this article, the effect of fault detectability, fault removability, fault exposure ratio, and fault removal efficiency has been considered simultaneously in software reliability growth modeling. Moreover, a logistic fault exposure ratio has been introduced. The effect of change point is incorporated in the proposed software reliability growth model. Two illustrative examples with software testing data have been presented.
Subject
Safety, Risk, Reliability and Quality
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献