A comparison between computer vision- and deep learning-based models for automated concrete crack detection

Author:

Sales da Cunha Beatriz12ORCID,das Chagas Moura Márcio12,Souto Maior Caio12ORCID,Cláudia Negreiros Ana12,Didier Lins Isis12

Affiliation:

1. Center for Risk Analysis, Reliability Engineering and Environmental Modeling (CEERMA), Universidade Federal de Pernambuco, Recife, Brazil

2. Department of Production Engineering, Universidade Federal de Pernambuco, Recife, Brazil

Abstract

Systems subjected to continuous operation are exposed to different failure mechanisms such as fatigue, corrosion, and temperature-related defects, which makes inspection and monitoring their health paramount to prevent a system suffering from severe damage. However, visual inspection strongly depends on a human being’s experience, and so its accuracy is influenced by the physical and cognitive state of the inspector. Particularly, civil infrastructures need to be periodically inspected. This is costly, time-consuming, labor-intensive, hazardous, and biased. Advances in Computer Vision (CV) techniques provide the means to develop automated, accurate, non-contact, and non-destructive inspection methods. Hence, this paper compares two different approaches to detecting cracks in images automatically. The first is based on a traditional CV technique, using texture analysis and machine learning methods (TA + ML-based), and the second is based on deep learning (DL), using Convolutional Neural Networks (CNN) models. We analyze both approaches, comparing several ML models and CNN architectures in a real crack database considering six distinct dataset sizes. The results showed that for small-sized datasets, for example, up to 100 images, the DL-based approach achieved a balanced accuracy (BA) of ∼74%, while the TA + ML-based approach obtained a BA > 95%. For larger datasets, the performances of both approaches present comparable results. For images classified as having crack(s), we also evaluate three metrics to measure the severity of a crack based on a segmented version of the original image, as an additional metric to trigger the appropriate maintenance response.

Publisher

SAGE Publications

Subject

Safety, Risk, Reliability and Quality

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3