Repeated measurements of renal function in evaluating its decline in cats

Author:

Finch Natalie C1ORCID,Syme Harriet M2,Elliott Jonathan3

Affiliation:

1. Bristol Renal, University of Bristol, Bristol, UK

2. Department of Clinical Science and Services, Royal Veterinary College, Hawkshead Lane, Hatfield, UK

3. Department of Comparative Biomedical Sciences, Royal College Street, London, UK

Abstract

Objectives The aim of this study was to describe the variability in renal function markers in non-azotaemic and azotaemic cats, and also the rate of change in the markers. Methods Plasma creatinine concentration and its reciprocal, glomerular filtration rate (GFR) and urine specific gravity (USG) were studied as markers of renal function in client-owned cats. GFR was determined using a corrected slope-intercept iohexol clearance method. Renal function testing was performed at baseline and a second time point. The within-population variability (coefficient of variation; CV%) was determined at the baseline time point. Within-individual variability (CV%) and rate of change over time were determined from the repeated measurements. Results Twenty-nine cats were included in the study, of which five had azotaemic chronic kidney disease. The within-individual variability (CV%) in creatinine concentration was lower in azotaemic cats than in non-azotaemic cats (6.81% vs 8.82%), whereas the within-individual variability in GFR was higher in azotaemic cats (28.94% vs 19.98%). The within-population variability was greatest for USG (67.86% in azotaemic cats and 38.00% in non-azotaemic cats). There was a negative rate of change in creatinine concentration in azotaemic and non-azotaemic cats (–0.0265 and –0.0344 µmol/l/day, respectively) and a positive rate of change of GFR in azotaemic and non-azotaemic cats (0.0062 and 0.0028 ml/min/day, respectively). Conclusions and relevance The within-individual variability data suggest creatinine concentration to be the more useful marker for serial monitoring of renal function in azotaemic cats. In contrast, in non-azotaemic cats, GFR is a more useful marker for serial monitoring of renal function. The majority of cats with azotaemic CKD did not have an appreciable decline in renal function during the study.

Publisher

SAGE Publications

Subject

Small Animals

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3