Machine-learning algorithm as a prognostic tool in non-obstructive acute-on-chronic kidney disease in the cat

Author:

Renard Jade1,Faucher Mathieu R1ORCID,Combes Anaïs1,Concordet Didier2,Reynolds Brice S2

Affiliation:

1. Alliance Small Animal Clinic, Bordeaux, France

2. InTheRes, University of Toulouse, INRAE, ENVT, Toulouse, France

Abstract

Objectives The aim of this study was to develop an algorithm capable of predicting short- and medium-term survival in cases of intrinsic acute-on-chronic kidney disease (ACKD) in cats. Methods The medical record database was searched to identify cats hospitalised for acute clinical signs and azotaemia of at least 48 h duration and diagnosed to have underlying chronic kidney disease based on ultrasonographic renal abnormalities or previously documented azotaemia. Cases with postrenal azotaemia, exposure to nephrotoxicants, feline infectious peritonitis or neoplasia were excluded. Clinical variables were combined in a clinical severity score (CSS). Clinicopathological and ultrasonographic variables were also collected. The following variables were tested as inputs in a machine learning system: age, body weight (BW), CSS, identification of small kidneys or nephroliths by ultrasonography, serum creatinine at 48 h (Crea48), spontaneous feeding at 48 h (SpF48) and aetiology. Outputs were outcomes at 7, 30, 90 and 180 days. The machine-learning system was trained to develop decision tree algorithms capable of predicting outputs from inputs. Finally, the diagnostic performance of the algorithms was calculated. Results Crea48 was the best predictor of survival at 7 days (threshold 1043 µmol/l, sensitivity 0.96, specificity 0.53), 30 days (threshold 566 µmol/l, sensitivity 0.70, specificity 0.89) and 90 days (threshold 566 µmol/l, sensitivity 0.76, specificity 0.80), with fewer cats still alive when their Crea48 was above these thresholds. A short decision tree, including age and Crea48, predicted the 180-day outcome best. When Crea48 was excluded from the analysis, the generated decision trees included CSS, age, BW, SpF48 and identification of small kidneys with an overall diagnostic performance similar to that using Crea48. Conclusions and relevance Crea48 helps predict short- and medium-term survival in cats with ACKD. Secondary variables that helped predict outcomes were age, CSS, BW, SpF48 and identification of small kidneys.

Publisher

SAGE Publications

Subject

Small Animals

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3