Detection of multidrug resistance and extended-spectrum/plasmid-mediated AmpC beta-lactamase genes in Enterobacteriaceae isolates from diseased cats in Italy

Author:

Piccolo Francesco Lo1,Belas Adriana2,Foti Maria1,Fisichella Vittorio1,Marques Cátia2,Pomba Constança2ORCID

Affiliation:

1. Section of Microbiology and Infectious Diseases, Department of Veterinary Sciences, University of Messina, Messina, Italy

2. CIISA, Centre of Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Lisbon, Portugal

Abstract

Objectives The aim of this study was to determine the antimicrobial susceptibility of Enterobacteriaceae isolated from cats affected by diseases commonly encountered in practice, and to characterise the third-generation cephalosporin (3GC)-resistance molecular mechanisms involved. Methods Clinical samples (n = 100) included 58 rectal swabs from cats with diarrhoea, 31 nasal swabs from cats with clinical signs of upper respiratory tract disease, four ear swabs from cats with otitis, three conjunctival swabs from cats with conjunctivitis, two oral swabs from cats with stomatitis, one swab from a skin abscess and one urine sample from a cat with cystitis. A total of 125 Enterobacteriaceae were isolated from 90 cats. Escherichia coli was the most frequently isolated species (n = 65), followed by Enterobacter species (n = 20), Proteus species (n = 13), Citrobacter species (n = 12) and others (n = 15). Bacterial susceptibility testing was performed with respect to eight antimicrobial classes. Beta (β)-lactamase genes were identified by PCR and nucleotide sequencing. Results Overall, the higher frequency of resistance was to amoxicillin–clavulanate (61.3%), trimethoprim/sulfamethoxazole (33.6%) and cefotaxime (32.8%). Thirty-six percent of the isolates (n = 45) were resistant to 3GCs. Of these isolates, 34 were tested by PCR and nucleotide sequencing and 23 were confirmed as encoding β-lactamase genes. Fourteen 3GC-resistant isolates harboured extended-spectrum β-lactamases (ESBLs) belonging to groups CTX-M-1 (n = 12, two of which were CTX-M-79), CTX-M-2 (n = 1) and CTX-M-9 (n = 1), as well as SHV-12 (n = 1) and TEM-92 (n = 1). Nine isolates had CMY-2 plasmid-mediated AmpC β-lactamases (pAmpC). Thirty-one percent (n = 39) of the isolates were multidrug resistant (MDR) and were isolated from 34% (n = 31/90) of the cats. Conclusions and relevance A high frequency of MDR and ESBL/pAmpC β-lactamase-producing Enterobacteriaceae were detected among bacteria isolated from a feline population in southern Italy with a variety of common clinical conditions, which poses limitations on therapeutic options for companion animals. We describe the first detection of CTX-M-79 and TEM-92 ESBL genes in isolates from cats.

Funder

fundação para a ciência e a tecnologia

Publisher

SAGE Publications

Subject

Small Animals

Reference65 articles.

1. Koenig A. Gram-negative bacterial infections. In: Greene CE (ed). Infectious diseases of the dog and cat. 4th ed. St Louis, MO: Saunders Elsevier, 2012, p 349.

2. Antimicrobial resistance in companion animals

3. Pet animals as reservoirs of antimicrobial-resistant bacteria: Review

4. Stakeholder position paper: Companion animal veterinarian

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3