Chondrogenesis, chondrocyte differentiation, and articular cartilage metabolism in health and osteoarthritis

Author:

Goldring Mary B.1

Affiliation:

1. Hospital for Special Surgery, Caspary Research Building, 5th Floor, 535 East 70th Street, New York, NY 10021, USA

Abstract

Chondrogenesis occurs as a result of mesenchymal cell condensation and chondroprogenitor cell differentiation. Following chondrogenesis, the chondrocytes remain as resting cells to form the articular cartilage or undergo proliferation, terminal differentiation to chondrocyte hypertrophy, and apoptosis in a process termed endochondral ossification, whereby the hypertrophic cartilage is replaced by bone. Human adult articular cartilage is a complex tissue of matrix proteins that varies from superficial to deep layers and from loaded to unloaded zones. A major challenge to efforts to repair cartilage by stem cell-based and other tissue-engineering strategies is the inability of the resident chondrocytes to lay down a new matrix with the same properties as it had when it was formed during development. Thus, understanding and comparing the mechanisms of cartilage remodeling during development, osteoarthritis (OA), and aging may lead to more effective strategies for preventing cartilage damage and promoting repair. The pivotal proteinase that marks OA progression is matrix metalloproteinase 13 (MMP-13), the major type II collagen-degrading collagenase, which is regulated by both stress and inflammatory signals. We and other investigators have found that there are common mediators of these processes in human OA cartilage. We also observe temporal and spatial expression of these mediators in early through late stages of OA in mouse models and are analyzing the consequences of knockout or transgenic overexpression of critical genes. Since the chondrocytes in adult human cartilage are normally quiescent and maintain the matrix in a low turnover state, understanding how they undergo phenotypic modulation and promote matrix destruction and abnormal repair in OA may to lead to identification of critical targets for therapy to block cartilage damage and promote effective cartilage repair.

Publisher

SAGE Publications

Subject

Orthopedics and Sports Medicine,Rheumatology

Cited by 329 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3