Mitigation of liquefaction triggering due to bio-gas-induced desaturation using element tests and the strain energy approach

Author:

Baziar Mohammad Hassan1,Eslami Amirabadi Omid1

Affiliation:

1. School of Civil Engineering, Iran University of Science and Technology, Tehran, Iran

Abstract

Currently, conventional remediation of liquefaction triggering may have many environmental effects, and this important issue has led researchers to look for more sustainable methods. In this research, one of the new bio-improvement methods (biogas) has been used to generate gas bubbles within a soil, susceptible to liquefaction. Using this method, two bio materials create ammonium ions and carbonate, in which ammonium ion is converted into nitrate due to the presence of bacteria in water, and they are eventually converted to nitrogen gas in an anaerobic condition. The nitrogen bubbles created in water reduce the soil’s degree of saturation, which in effect increases the soil’s resistance to liquefaction occurrence. In this study, two sources of urease enzyme were used to reduce the soil degree of saturation. The effects of various parameters, including the optimum concentration of each substance for optimum time to generate gas bubbles, as well as the effect of the oxygen amount in water were investigated using monotonic triaxial tests. The results illustrated that the addition of the mentioned two substances to the oxab (water with 60 ppm oxygen) or tap water decreased the pore water pressure due to desaturation. Finally, the energy approach was used to test the substance containing the amount of oxab with the highest decrease in pore water generation, here called “optimum selection,” in the cyclic triaxial device, and the results were analyzed to evaluate liquefaction occurrence. The outcome of these results revealed that compared with the strain energy of the non-treated sample, the treated sample had a much higher strain energy; in other words, the treated sample needed a larger amount of loading to trigger liquefaction.

Publisher

SAGE Publications

Subject

Geophysics,Geotechnical Engineering and Engineering Geology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3