Engineering site response analysis of Anchorage, Alaska, using site amplifications and random vibration theory

Author:

Thornley John12,Douglas John1,Dutta Utpal3,Yang Zhaohui (Joey)3

Affiliation:

1. Department of Civil & Environmental Engineering, University of Strathclyde, Glasgow, UK

2. Golder Associates—Member of WSP, Anchorage, AK, USA

3. Department of Civil Engineering, University of Alaska Anchorage, Anchorage, AK, USA

Abstract

Earthquake records collected at dense arrays of strong-motion stations are often utilized in microzonation studies to evaluate the changes in site response due to variability in site conditions across a region. These studies typically begin with calculating Fourier spectral amplification(s) and then transition to performing engineering site response analyses. It has proven difficult to utilize Fourier spectral amplification(s) to define the appropriate elastic response spectr(um)/(a) for a site or sites. This is because, first, the ground motions recorded at these strong-motion stations have lower intensity and hence do not show the nonlinear site effects observed during higher-intensity earthquakes and, second, Fourier and response spectral amplitudes measure different aspects of ground motions. The strong-motion stations in Anchorage, Alaska, have been recording earthquakes in the region for the last three decades. This study utilizes a database of 95 events from 2004 to 2019 to calculate Fourier spectral amplifications at 35 stations using the generalized inversion technique (GIT). Estimated response spectra have been evaluated at each site by applying those Fourier spectral amplifications to a response spectrum of a reference station through random vibration theory (RVT). Correction factors are also applied within the approach to account for nonlinear site effects. This RVT-based approach is tested using ground motions recorded during the MW7.1 2018 Anchorage Earthquake, and close matches between measured and predicted response spectra are found. The method is then compared with site response analyses using a calibrated 1D equivalent linear (EQL) model of the Delaney Park Downhole Array site. Estimated spectra using the RVT-based approach are, finally, compared with those using Next Generation Attenuation Subduction (NGA-Sub) and NGA-West2 ground-motion models. The proposed method provides a coherent and straightforward way to use GIT-derived Fourier spectral amplifications to directly estimate site-specific response spectra, accounting for nonlinear site effects and without requiring engineering characterization of subsurface soil conditions.

Publisher

SAGE Publications

Subject

Geophysics,Geotechnical Engineering and Engineering Geology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An approach for predicting surface strong motion using borehole seismometers;Soil Dynamics and Earthquake Engineering;2024-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3