Investment planning for earthquake-resilient electric power systems considering cascading outages

Author:

Cheng Boyu1ORCID,Nozick Linda1ORCID,Dobson Ian2ORCID

Affiliation:

1. School of Civil and Environmental Engineering, Cornell University, Ithaca, NY, USA

2. Department of Electrical and Computer Engineering, Iowa State University, Ames, IA, USA

Abstract

Earthquakes cause outages of power transmission system components due to direct physical damage and also through the initiation of cascading processes. This article explores what are the optimal capacity investments to increase the resilience of electric power transmission systems to earthquakes and how those investments change with respect to two issues: (1) the impact of including cascades in the investment optimization model and (2) the impact of focusing more heavily on the early stages of the outages after the earthquake in contrast to more evenly focusing on outages across the entire restoration process. A cascading outage model driven by the statistics of sample utility data is developed and used to locate the cascading lines. We compare the investment plans with and without the modeling of the cascades and with different levels of importance attached to outages that occur during different periods of the restoration process. Using a case study of the Eastern Interconnect transmission grid, where the seismic hazard stems mostly from the New Madrid Seismic Zone, we find that the cascades have little effect on the optimal set of capacity enhancement investments. However, the cascades do have a significant impact on the early stages of the restoration process. Also, the cascading lines can be far away from the initial physically damaged lines. More broadly, the early stages of the earthquake restoration process is affected by the extent of the cascading outages and is critical for search and rescue as well as restoring vital services. Also, we show that an investment plan focusing more heavily on outages in the first 3 days after the earthquake yields fewer outages in the first month, but more outages later in comparison with an investment plan focusing uniformly on outages over an entire 6-month restoration process.

Funder

National Science Foundation

Publisher

SAGE Publications

Subject

Geophysics,Geotechnical Engineering and Engineering Geology

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3