A procedure to develop a backbone ground-motion model: A case study for its implementation

Author:

Akkar Sinan1ORCID,Kale Özkan2,Sandıkkaya M Abdullah3,Yenier Emrah4

Affiliation:

1. Department of Earthquake Engineering, Kandilli Observatory and Earthquake Research Institute, Bogazici University, Istanbul 34684, Turkey

2. Department of Civil Engineering, TED University, Ankara, Turkey

3. Department of Civil Engineering, Hacettepe University, Ankara, Turkey

4. Nanometrics, Ottawa, ON, Canada

Abstract

The backbone modeling in ground-motion characterization (GMC) is a useful methodology to describe the epistemic uncertainty in median ground-motion predictions. The approach uses a backbone ground-motion model (GMM) and populates the GMC logic tree with the scaled and/or adjusted versions of the backbone GMM to capture the epistemic uncertainty in median ground motions. The scaling and/or adjustment should represent the specific features and uncertainties involved in source, path, and site effects at the target site. The identification of the backbone model requires different considerations specific to the nature of the ground-motion hazard problem. In this article, we present a scaled backbone modeling approach that considers the magnitude- and distance-scaling predictors as well as their correlation to address the epistemic uncertainty in median ground-motion predictions. This approach results in a trivariate normal distribution to fully define a range of epistemic uncertainty in a model sample space. The simultaneous consideration of magnitude and distance scaling while defining the epistemic uncertainty and the methodology followed for the simplified representation of trivariate normal distribution in ground-motion logic tree are the two important features in our procedure. We first present the proposed approach that is followed by a case study for Central and Eastern North America (CENA) stable continental region. The case study discusses the underlying assumptions and limitations of the proposed approach.

Publisher

SAGE Publications

Subject

Geophysics,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3