The promise of implementing machine learning in earthquake engineering: A state-of-the-art review

Author:

Xie Yazhou1,Ebad Sichani Majid2ORCID,Padgett Jamie E2,DesRoches Reginald2

Affiliation:

1. Department of Civil Engineering and Applied Mechanics, McGill University, Montreal, QC, Canada

2. Department of Civil and Environmental Engineering, Rice University, Houston, TX, USA

Abstract

Machine learning (ML) has evolved rapidly over recent years with the promise to substantially alter and enhance the role of data science in a variety of disciplines. Compared with traditional approaches, ML offers advantages to handle complex problems, provide computational efficiency, propagate and treat uncertainties, and facilitate decision making. Also, the maturing of ML has led to significant advances in not only the main-stream artificial intelligence (AI) research but also other science and engineering fields, such as material science, bioengineering, construction management, and transportation engineering. This study conducts a comprehensive review of the progress and challenges of implementing ML in the earthquake engineering domain. A hierarchical attribute matrix is adopted to categorize the existing literature based on four traits identified in the field, such as ML method, topic area, data resource, and scale of analysis. The state-of-the-art review indicates to what extent ML has been applied in four topic areas of earthquake engineering, including seismic hazard analysis, system identification and damage detection, seismic fragility assessment, and structural control for earthquake mitigation. Moreover, research challenges and the associated future research needs are discussed, which include embracing the next generation of data sharing and sensor technologies, implementing more advanced ML techniques, and developing physics-guided ML models.

Publisher

SAGE Publications

Subject

Geophysics,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3