Steel flexure and shear yielding base-mechanism for enhanced seismic resilience of RC core wall high-rise structures

Author:

Kent Jordyn1,Zhong Chiyun1ORCID,Christopoulos Constantin1

Affiliation:

1. Department of Civil & Mineral Engineering, University of Toronto, Toronto, ON, Canada

Abstract

As a result of rapid urbanization worldwide, there is an increasing demand for high-rise buildings, creating an acute need for more resilient tall structures, especially in regions of high seismicity. One of the main challenges facing design engineers is that buildings become increasingly susceptible to higher-mode effects as they become taller. Although current design practices typically achieve life-safety and collapse-prevention during major earthquake events, there is often extensive structural and non-structural damage, in great part exacerbated by the contribution of higher-mode responses. This article proposes a novel system involving a flexure and shear yielding base-mechanism, designed to limit both the first mode and higher-mode responses of a 42-story benchmark structure. These concepts only make use of well-defined buckling restrained steel braces, which have been extensively tested over many decades now and are currently implemented widely in buildings, to achieve the desired shear and flexural base yielding mechanisms. Nonlinear three-dimensional (3D) models developed in ABAQUS were used to validate key elements while models of the benchmark structure and base-mechanism were developed in ETABS to perform Nonlinear Time-History Analyses (NLTHA) for three hazard levels to investigate the global seismic response of the proposed system. Improvements among key seismic response parameters are observed at all hazard levels. By concentrating inelastic demands in the dedicated base steel yielding braces in the proposed system, quick inspection and potential repair after a major earthquake can be achieved with reduced disruptions to the use and operation of the building above.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

SAGE Publications

Subject

Geophysics,Geotechnical Engineering and Engineering Geology

Reference62 articles.

1. Strengthening of moment-resisting frame structures against near-fault ground motion effects

2. Algan BB (1982) Drift and damage considerations in earthquake-resistant design of reinforced concrete buildings. PhD Dissertation, University of Illinois at Urbana-Champaign, Champaign, IL.

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3