Regression-based scenario earthquake selection for regional hazard-consistent risk assessments

Author:

Wang Pengfei1ORCID,Liu Zehan2,Brandenberg Scott J2ORCID,Zimmaro Paolo23ORCID,Stewart Jonathan P2ORCID

Affiliation:

1. Department of Civil & Environmental Engineering, Old Dominion University, Norfolk, VA, USA

2. Civil & Environmental Engineering Department, University of California, Los Angeles, Los Angeles, CA, USA

3. Department of Environmental Engineering, University of Calabria, Rende, Italy

Abstract

Conventional probabilistic seismic hazard analysis (PSHA) is often repeated at many locations independently to develop uniform hazard maps. However, such maps are unsuitable for assessing risk to spatially distributed infrastructure because no single event will produce uniform hazard shaking intensities across a broad region. A robust but computationally expensive approach is to analyze spatially distributed infrastructure systems separately for every event considered in the seismic source characterization model used in the PSHA. This approach may not be practical when many scenario events are considered. An alternative is to select a manageable event subset that, in aggregate, approximately matches the hazard for single or multiple ground motion intensity measures across the spatially distributed system preserving contributions of different magnitudes and distances to the PSHA. We present a flexible and efficient regression-based method that meets these requirements using point-based PSHA results as inputs. The approach is illustrated with a case study of distributed infrastructure in southern California. We demonstrate the efficiency of the method by comparing it to a mixed-integer linear optimization method from the literature.

Funder

Delta Stewardship Council

Publisher

SAGE Publications

Subject

Geophysics,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3