Reducing the uncertainties in the NGA-West2 ground motion models by incorporating the frequency and amplitude of the fundamental peak of the horizontal-to-vertical spectral ratio of surface ground motions

Author:

Yazdi Mohammad1ORCID,Anderson John G2ORCID,Motamed Ramin1ORCID

Affiliation:

1. Department of Civil & Environmental Engineering, University of Nevada, Reno, Reno, NV, USA

2. The Nevada Seismological Laboratory, University of Nevada, Reno, Reno, NV, USA

Abstract

Ground motion models (GMMs) are developed empirically to predict ground motion intensity measures. The site effects in GMMs are usually addressed using time-averaged shear-wave velocity for the upper 30 m of the site (VS30) and shear-wave isosurface depth (i.e. Z1.0 and Z2.5). However, the former does not include the effect of layered soil structure on the site’s response, and the latter is generally inferred. Many studies have shown that site fundamental frequency can be used as an additional site proxy. Using horizontal-to-vertical spectral ratio (HVSR), one can estimate the site fundamental frequency in a fast and inexpensive way. In this article, a model is developed to incorporate site fundamental frequency and its corresponding amplification factor in the Next Generation Attenuation (NGA)-West2 GMMs to reduce the uncertainties. First, a subset of the NGA-West2 database consisting of 14,636 recordings from 298 events is selected after a two-step screening procedure and used to compute the horizontal-to-vertical response spectral ratio (HVSRPSA) of recorded surface ground motions. Second, automated methodologies previously developed by the authors are used to obtain maximum likelihood estimates of site fundamental frequency (fml), its corresponding amplitude (Aml), and associated uncertainties. Third, a mixed-effect maximum likelihood approach is implemented for residual analysis and site-term residual calculation. Finally, an HVSR-based model is developed for the NGA-West2 dataset considering the relationship between site-term residual and the HVSR-based proxies (i.e. fml and Aml). In this model, Aml is as important as fml in reducing the uncertainties. Results show that using a single HVSR-based model can consistently reduce the site-to-site variability ([Formula: see text]) for all NGA-West2 GMMs, which already include the effect of VS30, Z1.0, or Z2.5. Besides, the reduction in [Formula: see text] is period-dependent, with an average of 13% reduction. As a result of the reduction in [Formula: see text], total standard deviation ( σ) decreases by 3.5% on average.

Funder

U.S. Geological Survey

Publisher

SAGE Publications

Subject

Geophysics,Geotechnical Engineering and Engineering Geology

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3