Congestion and observability across interdependent power and telecommunication networks under seismic hazard

Author:

Talebiyan Hesam1ORCID,Leelardcharoen Kanoknart2,Dueñas-Osorio Leonardo1,Goodno Barry J3,Craig James I4

Affiliation:

1. Department of Civil and Environmental Engineering, Rice University, Houston, TX, USA

2. Hellmuth, Obata + Kassabaum, L.P., Houston, TX, USA

3. School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, USA

4. School of Aerospace Engineering, Georgia Institute of Technology, Atlanta, GA, USA

Abstract

This article quantifies the seismic performance of interdependent electric power and telecommunication systems, while also identifying variables with the highest impact on design. We introduce interdependent power and telecommunication models, which probabilistically simulate the physical dependency of telecommunication systems on power via interdependent adjacency and coupling strength, while a topology observability analysis quantifies the cyber dependency of the power system on telecommunications. We also use new functionality-based performance measures, including data congestion in telecommunications and partial observability in power systems, given communication demands upsurging after earthquakes. As an application, our methodology assesses the performance of stylized power and telecommunication systems in Shelby County, TN. Results show that neglecting retrials, congestion, and power interdependency lead to significant overestimation of the performance of telecommunication systems, particularly at low-to-medium hazard levels. Sensitivity results also reveal that decreasing the strength of coupling across systems is one of the most effective ways to improve the seismic performance of evolving cyber-physical systems, particularly when increasing observability in the power system through telecommunication end offices with richer data flow pathways.

Funder

U.S. Department of Defense

national science foundation

Publisher

SAGE Publications

Subject

Geophysics,Geotechnical Engineering and Engineering Geology

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3