Seismic response prediction using intensity measures: Graphite nuclear reactor core model case study

Author:

Gokce Tansu1ORCID,White Rory E1,Crewe Adam J1,Dietz Matt1,Horseman Tony1,Dihoru Luiza1

Affiliation:

1. Earthquake and Geotechnical Engineering Research Group, Faculty of Engineering, University of Bristol, Bristol, UK

Abstract

Seismic response analyses of structures have conventionally used the peak ground acceleration or spectral acceleration as an intensity measure to estimate the engineering demand parameters. An extensive shaking table test program was carried out on a quarter-sized advanced gas-cooled reactor (AGR) core model to investigate the global dynamic behavior of the system with degraded graphite components while subjected to seismic excitation. Evaluation of the most widely considered intensity measures, with respect to their capability for predicting the seismic response of an AGR core–like structure, is performed. Twenty intensity measures of 16 distinct seismic input motions are formulated and correlated, with experimental measurements describing the dynamic response of the reactor core model. Linear correlations are constructed for each intensity measure to statistically determine the best metric for predicting the seismic response of the AGR core model, and statistical analysis indicates that the acceleration spectrum intensity (ASI) is best suited to characterize and describe the structural demand of an AGR core-like structure when subjected to seismic loading. A response prediction tool is developed, based on empirically derived linear correlations, to estimate column distortions and determine the critical input motion for further experimental and numerical studies. Statistical analysis indicates that predicted column distortions, compared against direct experimental displacements, are significant, repeatable, and accurate.

Funder

EDF

Publisher

SAGE Publications

Subject

Geophysics,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3