Significance of site natural period effects for linear site amplification in central and eastern North America: Empirical and simulation-based models

Author:

Hashash Youssef M. A.1,Ilhan Okan1,Hassani Behzad2,Atkinson Gail M.3,Harmon Joseph4,Shao Hua1

Affiliation:

1. Department of Civil and Environmental Engineering, University of Illinois at Urbana–Champaign, Urbana, IL, USA

2. Civil Design, Generation Engineering, BC Hydro, Burnaby, BC, Canada

3. Department of Earth Sciences, Western University, London, ON, Canada

4. Hart Crowser, Inc., Seattle, WA, USA

Abstract

This article evaluates linear simulation-based and empirical site amplification models including site natural period dependency parameters to account for the distinctive amplification behavior near site fundamental frequencies resulting from the sharp impedance contrast between soil and underlying hard bedrock in central and eastern North America (CENA). The simulation-based amplification models are developed using 581,685 frequency-domain linear analyses generated from a parametric study and include VS30-scaling and site natural period ( Tnat) parameters. The empirical models are derived from residuals analyses of ground-motion models for two reference conditions: B/C boundary ( VS30 = 760 m/s) and CENA hard-rock condition ( VS = 3000 m/s). The simulation-based and empirical models are compared for 8 site profiles in CENA to measured horizontal-to-vertical (H/V) component response spectral (RS) ratios, the mean of linear simulations for similar sites, and one-dimensional (1D) linear site response analysis for four of these sites. Comparisons between observed and estimated site amplification behaviors highlight model dependency on Tnat in CENA. Model consistencies and differences related to the distinct linear amplification features near site fundamental frequency are discussed.

Publisher

SAGE Publications

Subject

Geophysics,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3