Spatial correlation in ground motion prediction errors in Central and Eastern North America

Author:

Gibson Emily M12,Bensi Michelle T2

Affiliation:

1. Schnabel Engineering, LLC. Chadds Ford, PA, USA

2. University of Maryland, Maryland-College Park, College Park, College Park, MD, USA

Abstract

Risk analysis and risk-informed design of spatially distributed infrastructure systems for earthquake hazards require an understanding of and ability to model the spatial correlation of ground motion prediction errors. We assess this spatial correlation in Central and Eastern North America (CENA) by calculating ground motion residuals and semivariograms from earthquake recordings in the Next Generation Attenuation (NGA)-East database. Although data limitations prohibit the development of a reliable model to capture this correlation, we have made notable findings relevant to future risk analyses. The spatial correlation of ground motion prediction errors in CENA is larger than those previously published for shallow crustal regions, which agrees with the lower attenuation observed in CENA. Differences in correlation behavior is also observed between tectonic and induced event recordings. This is, in part, due to the characteristics of the system of stations in which they were recorded. In addition, the choice of ground motion model (GMM) used to calculate the predicted ground motions was found to have an impact on the resulting correlation of errors and we recommend that future CENA spatial correlation models be tailored to the specific infrastructure system and location that will be analyzed.

Funder

Schnabel Engineering, LLC.

several federal agencies

Publisher

SAGE Publications

Subject

Geophysics,Geotechnical Engineering and Engineering Geology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Proposed Bayesian Network Framework to Model Multisite Seismic Hazard with Existing Probabilistic Seismic Hazard Analysis Results;ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering;2024-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3