Efficient intensity measures and machine learning algorithms for collapse prediction of tall buildings informed by SCEC CyberShake ground motion simulations
Author:
Affiliation:
1. Department of Civil and Environmental Engineering, Stanford University, Stanford, CA, USA
2. Department of Civil, Environmental, & Construction Engineering, Texas Tech University, Lubbock, TX, USA
Abstract
Publisher
SAGE Publications
Subject
Geophysics,Geotechnical Engineering and Engineering Geology
Link
http://journals.sagepub.com/doi/pdf/10.1177/8755293020919414
Reference40 articles.
1. Inelastic Seismic Demand of Real versus Simulated Ground-Motion Records for Cascadia Subduction Earthquakes
2. Validation of the SCEC Broadband Platform simulations for tall building risk assessments considering spectral shape and duration of the ground motion
3. Evaluation of Building Collapse Risk and Drift Demands by Nonlinear Structural Analyses Using Conventional Hazard Analysis versus Direct Simulation with CyberShake Seismograms
4. Quantification of the Influence of Deep Basin Effects on Structural Collapse Using SCEC CyberShake Earthquake Ground Motion Simulations
5. Ground motion selection for simulation-based seismic hazard and structural reliability assessment
Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Machine-Learning Applications in Structural Response Prediction: A Review;Practice Periodical on Structural Design and Construction;2024-08
2. Physics Informed Machine Learning (PIML) for Design, Management and Resilience-Development of Urban Infrastructures: A Review;Archives of Computational Methods in Engineering;2024-06-12
3. Using open-science workflow tools to produce SCEC CyberShake physics-based probabilistic seismic hazard models;Frontiers in High Performance Computing;2024-05-01
4. An Integrated Model for Risk Assessment of Urban Road Collapse Based on China Accident Data;Sustainability;2024-03-01
5. State-of-the-Art Review: Seismic Design and Performance Assessment of Special Concentrically Braced Frames Developed for Complex Industrial Building Structures;International Journal of Steel Structures;2024-02-19
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3