Predicting the seismic ground-motion parameters: 3D physics-based numerical simulations combined with artificial neural networks

Author:

Ba Zhenning123,Lyu Linghui3,Zhao Jingxuan123,Zhang Yushan4,Wang Yu3

Affiliation:

1. State Key Laboratory of Hydraulic Engineering Simulation and Safety, Tianjin University, Tianjin, China

2. Key Laboratory of Earthquake Engineering Simulation and Seismic Resilience of China Earthquake Administration (Tianjin University), Tianjin, China

3. Department of Civil Engineering, Tianjin University, Tianjin, China

4. China Earthquake Disaster Prevention Centre, Beijing, China

Abstract

Typically, it is challenging to incorporate near-surface soils into 3D physics-based numerical simulations (PBSs) for ground-motion prediction. The low shear wave speed of near-surface soils, coupled with the complexity of the soil seismic response, poses significant difficulties. To overcome these limitations, a hybrid approach was proposed in this study, combining PBSs with artificial neural networks (ANNs). The essence of the hybrid method can be summarized as follows: (1) development of ANN models, establishing a strong-motion database, training the ANNs on it to predict the ground-motion parameters for East–West (EW), North–South (NS), and Vertical (UD) directions afterward; (2) establishment of 3D PBS model, obtaining the ground-motion parameters of the bedrock face corresponding to a certain shear wave speed; (3) application of the trained ANNs to predict the ground-motion parameters on the ground surface, taking the simulated results and related site parameters as inputs, and the outputs are peak ground acceleration (PGA) and 5% damped spectral accelerations (Sa) at different periods on the ground surface. In this study, ANN models were trained on a strong-motion database based on Kiban–Kyoshin Network (KiK-net). After several verifications of the ANN predictions, a case study of the 21 October 2016 Mw6.2 Central Tottori earthquake was conducted. In addition to the comparison with observations, the broadband (0.1–10 Hz) results of the hybrid method were also compared with the results that obtained by transfer function based on recorded data and Next Generation Attenuation (NGA)-West2 ground-motion prediction equations (GMPEs) to demonstrate the effectiveness and applicability of the proposed method. In addition, the distribution of Sa for four periods in simulated area was presented. The performance of the hybrid method for predicting broadband ground-motion characteristics was generally satisfactory.

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3