Post-earthquake assessment of moderately damaged reinforced concrete plastic hinges

Author:

Marder Kai1,Elwood Kenneth J.1,Motter Christopher J.2,Clifton G. Charles1

Affiliation:

1. Department of Civil and Environmental Engineering, The University of Auckland, Auckland, New Zealand

2. Department of Civil and Environmental Engineering, Washington State University, Pullman, WA, USA

Abstract

Modern reinforced concrete buildings are often designed to dissipate energy during strong earthquakes by permitting the controlled formation of plastic hinges. Plastic hinges require assessment of residual capacity in post-earthquake situations. However, few past studies have investigated this topic, and results from experiments focused on undamaged structures are not always transferable to post-earthquake situations. Data from an experimental program, in which both cyclic and earthquake-type loadings were applied to nominally identical reinforced concrete beams, are used to investigate the relationship between residual crack widths and rotation demands. Assessment of the peak deformation demands incurred during a damaging earthquake is critical for post-earthquake assessments, but residual crack widths are shown to be dependent on several factors in addition to the peak rotation demand. Non-dimensional metrics capturing the distribution of cracking are proposed as a more informative alternative. The reduction in stiffness that occurs as a result of earthquake-induced plastic hinging damage was also investigated. A proposed model is shown to give a lower-bound estimate of the residual stiffness following arbitrary earthquake-type loadings.

Publisher

SAGE Publications

Subject

Geophysics,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3