Three-dimensional numerical modeling of ground motion in the Valley of Mexico: A case study from the Mw3.2 earthquake of July 17, 2019

Author:

Hernández-Aguirre Victor Moises12,Paolucci Roberto1,Sánchez-Sesma Francisco José3,Mazzieri Ilario4

Affiliation:

1. Department of Civil and Environmental Engineering, Politecnico di Milano, Milan, Italy

2. Earthquake Engineering Research Centre, Faculty of Civil and Environmental Engineering, University of Iceland, Reykjavik, Iceland

3. Instituto de Ingeniería, UNAM, Mexico City, Mexico

4. MOX, Laboratory for Modelling and Scientific Computing, Department of Mathematics, Politecnico di Milano, Milan, Italy

Abstract

In this study, a 3D physics-based numerical approach, based on the spectral element numerical code SPEED, is used to simulate seismic wave propagation due to a local earthquake in the Mexico City area. The availability of detailed geological, geophysical, geotechnical, and seismological data allowed for the creation of a large-scale (60 km × 60 km in plan, 10 km in depth) heterogeneous 3D numerical model of the Mexico City area, dimensioned to accurately propagate frequencies up to about 1.3 Hz. The results of numerical simulations are validated against the ground motion recordings of the July 17, 2019, Mw3.2 earthquake, with peak ground acceleration exceeding 0.3 g about 1 km away from the epicenter. A good agreement with records is found, quantitatively evaluated through goodness-of-fit checks. Furthermore, for the lake zone, the simulated decay trend of the peak ground velocity with epicentral distance is reasonably close to the observations, for both horizontal and vertical components. In spite of some limitations, the simulations are successful to provide a realistic picture of seismic wave propagation both in the hill and in the lake zones of Mexico City, including the onset of long-duration quasi-monochromatic ground motion in the basin, with strong amplification at low frequencies (between 0.4 and 0.7 Hz). The numerical results also suggest that surface waves, with predominant prograde particle motion at the ground surface and large ellipticities, dominate the wavefield in the lake zone. Based on these positive outcomes, we conclude that this numerical model may be useful for both a better insight into the seismic response of the Valley of Mexico and the simulation of ground motions during larger-magnitude earthquakes, to generate improved seismic damage scenarios in Mexico City.

Funder

Rannís

DGAPA-UNAM

Publisher

SAGE Publications

Subject

Geophysics,Geotechnical Engineering and Engineering Geology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3