Guided post-earthquake reconnaissance surveys considering resource constraints for regional damage inference

Author:

Sheibani Mohamadreza1,Ou Ge1

Affiliation:

1. Department of Civil & Environmental Engineering, The University of Utah, Salt Lake City, UT, USA

Abstract

The extent of loss in a seismic hazard can be moderated with on-time allocation of funds and initiation of recovery tasks. Among various examinations conducted following the hazard, buildings damages are assessed as part of the reconnaissance survey to learn and document the impact of the earthquake on structures. The results of the survey are used in financial aid estimation, which is crucial for the community rapid recovery acts after the hazard. Due to the urgent need for this information, the amount of information gained per unit of time should be optimized. This article aims at answering the question of how to maximize the information gain in the presence of resource constraints by directing the efforts of a reconnaissance surveying team. A data-driven method is proposed that actively learns the patterns of damage and recommends the most informative buildings to be inspected while considering the resource limitations. The framework utilizes an efficient active learning method based on mutual information and developed for Gaussian process regression (GPR) to identify the information-rich cases. To assess the contribution of information gain and resource allocation in the overall outcome of the damage inference, two simulated earthquake testbeds are studied. It is shown that in a co-optimization approach, damage labels of the majority of buildings can be accurately predicted after 1 week of damage inspections.

Funder

National Science Foundation

University of Utah Startup Fund

Publisher

SAGE Publications

Subject

Geophysics,Geotechnical Engineering and Engineering Geology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3