Affiliation:
1. Boston University, USA
Abstract
Demand uncertainty is a fundamental characteristic of the hospitality industry. Hotel room inventory is fixed, and devising an accurate daily demand measurement is a key operational challenge. In practice, it is difficult to predict the industry stability and capture demand uncertainty, so the industry relies on demand estimates. This process of estimation affects revenue maximization, as it is sensitive to incremental costs. In this article, we implemented vector autoregressive (VAR) models and compared them to the Bayesian VAR to examine the accuracy of predicting demand. We evaluated the results using a new measure of forecasting accuracy, the mean arctangent absolute percentage error (MAAPE). The results generated from the forecasts confirm the significant improvement in forecasting performance that can be obtained using the Bayesian model. It is noteworthy that the VAR performs the best for the lower horizons. The results also suggest that MAAPE outperforms other existing accuracy measures, in terms of error rates.
Subject
Tourism, Leisure and Hospitality Management,Geography, Planning and Development
Cited by
26 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献