Affiliation:
1. Guangxi University; The Hong Kong Polytechnic University, China
2. The Hong Kong Polytechnic University, China
Abstract
Search engine data are of considerable interest to researchers for their utility in predicting human behaviour. Recently, search engine data have also been used to predict tourism demand (TD). Models developed based on such data generate more accurate forecasts of TD than pure time-series models. The aim of this article is to examine whether combining causal variables with search engine data can further improve the forecasting performance of search engine data models. Based on an artificial neural network framework, 168 observations during 2005–2018 for short-haul travel from Hong Kong to Macau are involved in the test, and the empirical results suggest that search engine data models with causal variables outperform models without causal variables and other benchmark models.
Funder
National Natural Science Foundation of China
Subject
Tourism, Leisure and Hospitality Management,Geography, Planning and Development
Cited by
40 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献