Affiliation:
1. IVI Foundation – IIS La Fe, 46026 Valencia, Spain
2. IVI Foundation – IIS La Fe, Valencia, Spain
3. IVI Foundation – IIS La Fe, Valencia, Spain; IVIRMA Valencia, Valencia, Spain
Abstract
Poor ovarian responders exhibit a quantitative reduction in their follicular pool, and most cases are also associated with poor oocyte quality due to patient’s age, which leads to impaired in vitro fertilisation outcomes. In particular, poor oocyte quality has been related to mitochondrial dysfunction and/or low mitochondrial count as these organelles are crucial in many essential oocyte processes. Therefore, mitochondrial enrichment has been proposed as a potential therapy option in infertile patients to improve oocyte quality and subsequent in vitro fertilisation outcomes. Nowadays, different options are available for mitochondrial enrichment treatments that are encompassed in two main approaches: heterologous and autologous. In the heterologous approach, mitochondria come from an external source, which is an oocyte donor. These techniques include transferring either a portion of the donor’s oocyte cytoplasm to the recipient oocyte or nuclear material from the patient to the donor’s oocyte. In any case, this approach entails many ethical and safety concerns that mainly arise from the uncertain degree of mitochondrial heteroplasmy deriving from it. Thus the autologous approach is considered a suitable potential tool to improve oocyte quality by overcoming the heteroplasmy issue. Autologous mitochondrial transfer, however, has not yielded as many beneficial outcomes as initially expected. Proposed mitochondrial autologous sources include immature oocytes, granulosa cells, germline stem cells, and adipose-derived stem cells. Presently, it would seem that these autologous techniques do not improve clinical outcomes in human infertile patients. However, further trials still need to be performed to confirm these results. Besides these two main categories, new strategies have arisen for oocyte rejuvenation by improving patient’s own mitochondrial function and avoiding the unknown consequences of third-party genetic material. This is the case of antioxidants, which may enhance mitochondrial activity by counteracting and/or preventing oxidative stress damage. Among others, coenzyme-Q10 and melatonin have shown promising results in low-prognosis infertile patients, although further randomised clinical trials are still necessary.
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献