Investigation of the thermal comfort of the sportswear by standing thermal manikin and thermal imaging techniques

Author:

Taştan Özkan Esra1ORCID,Kaplangiray Binnaz2,Şekir Ufuk3,Şahin Şenay4

Affiliation:

1. Traditional Turkish Arts Department, Bitlis Eren University, Merkez, Bitlis, Turkey

2. Textile Engineering Department, Bursa Uludağ University, Nilüfer, Bursa, Turkey

3. Sport Medicine Department, Bursa Uludağ University, Nilüfer, Bursa, Turkey

4. Coaching Education Department, Bursa Uludag University, Nilüfer, Bursa, Turkey

Abstract

Garments should not overload the body during activity and should be chosen in accordance with the ambient conditions. Especially in active sports, sportswear should make a person feel comfortable and increase performance by easily removing excess heat and moisture from the body without interrupting physical activity. In this study, five T-shirts with the same size and weight characteristics, but in different yarn types were produced and analysed. The thermal and water vapour resistance properties of these garments were measured using a thermal manikin system. In addition, thermal camera images were taken at 10-minute intervals during the 50-minute wear trial programme, and skin temperatures were measured from the upper front body and the upper back body with two sensors. The results showed that POS and PM-coded garments made of polyester with low clothing insulation (clo) values were statistically different from CS and CPS coded cotton-containing garments in terms of front and back surface thermal camera images. It was observed that cotton-containing garments were more uncomfortable than polyester and Tencel owing to their higher thermal resistance, garment surface temperature, and skin temperature values. The Tencel garment was measured similarly to the CS and CPS coded garments at the beginning of the activity and measured similarly to the POS and PM coded garments at the end of the activity on both surfaces.

Funder

Bursa Uludağ Üniversitesi

Publisher

SAGE Publications

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3