Cellulose Acetate Fibers with Fluorescing Nanoparticles for Anti-counterfeiting and pH-sensing Applications

Author:

Hendrick Erin1,Frey Margaret1,Herz Erik1,Wiesner Ulrich1

Affiliation:

1. Cornell University, Ithaca, NY UNITED STATES

Abstract

Fluorescent silica nanoparticles, Cornell dots (C dots), were incorporated into electrospun cellulose acetate (CA) fibers. Two types of C dots were used in this study. The first type was comprised of a fluorescent dye-containing silica core surrounded by a silica shell. These nanoparticles fluoresce at 572 nm when exposed to 541 nm light. Increasing C dot loading in the spinning dope above 10% w/w did not result in an increase in C dot content within the final fibers. Scanning electron microscopy indicated that the nanoparticle incorporation had very little effect on the fiber morphology. The mechanical properties of the electrospun fabrics were not negatively affected by C dot addition, even though final loading constituted nearly one-third of the weight of the fibers. A second type of C dots, with both a fluorescent core and a pH-sensitive shell, were also incorporated in CA fibers. These C dots fluoresce at both 572 nm as described above, and at 518 nm, when exposed to 488 nm light. Fluorescence intensity at 541 nm increased with increasing pH. For both nanoparticle-incorporated fabrics, the resulting fibers are white under ambient lighting, and fluoresce at their given wavelengths of light.

Publisher

SAGE Publications

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3