Investigation of mechanical properties of electrospun poly (vinyl chloride) polymer nanoengineered composite

Author:

Tarus Bethwel K.1ORCID,Fadel Nermin2,Al-Oufy Affaf2,El-Messiry Magdi2

Affiliation:

1. School of Engineering, Moi University, Eldoret, Rift Valley, Kenya

2. NNRL, Textile Engineering Department, Faculty of Engineering, Alexandria University, Alexandria, Egypt

Abstract

Nanofiber membranes are extensively used in ultra- and micro-filtration purposes due to their high surface-to-volume ratio. However, nanofiber membranes do not have adequate strength to withstand forces acting on the filter surface, especially when using very low porosity membranes. In this study, PVC nanofiber mats and nanofiber composite membranes were fabricated through electrospinning and solvent casting technology. The membranes were characterized using scanning electron microscopy (SEM), porosimetry, and tensile strength tests. Analysis indicated that electrospun mats contain varying pore sizes (nano to micro) whose frequencies within the mat vary with fiber diameter. It was also established that mats fabricated from low solution concentration contain the largest percentage of pores. The mats’ tensile strength varied with fiber packing density, fiber assembly, and the density of fiber-to-fiber contact points. The tensile properties of the nanofiber composite membranes were found to be between those of the constituents and changed with change in the nanofiber layer thickness. The fabricated nanofiber composite membranes are intended for use in applications such as air ultra-filtration, acoustic filtration etc. The high porosity and small mesh pore size of electrospun nanofiber mats allow for removal of ultra-fine particles or microbes from contaminated air, water or other media.

Publisher

SAGE Publications

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3