Effects of melt spinning parameters on polypropylene hollow fiber formation

Author:

Ruckdashel Rebecca1,Shim Eunkyoung1ORCID

Affiliation:

1. North Carolina State University, Raleigh, NC, USA

Abstract

The objective of this research was to explore the effects of processing conditions on hollow fiber spinning, specifically to look at how differences in solidification impact hollow and solid fiber structures. Polypropylene hollow fibers were melt-spun with a four-segmented arc (4C) die under the wide ranges of spinning conditions (0.25–0.83 g/min of polymer mass throughput per a fiber, 500–2000 m/min of spinning speed, and 5%–100% quench rate). Fiber structure was explored through thermal, geometric, and tensile properties. Fiber hollowness depends on all spinning parameters studied (mass throughput, spinning speed, and quench rate). Increasing the quench rate resulted in the fiber solidifications closer to the spinneret. This leads to higher hollowness but also affected fiber tensile properties. When hollow and solid fibers were compared at constant quench, the hollow fiber solidified faster than solid fiber. The crystallinity of the fibers remained similar, but the tensile modulus was higher for hollow fiber than for solid fiber.

Publisher

SAGE Publications

Subject

General Materials Science

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3