New weft knitting process: Morphological, physical and mechanical characterisation of the innovative knitted fabrics

Author:

Holderied Prisca12,Weber Marcus O.2,Bueno Marie-Ange1ORCID

Affiliation:

1. Laboratoire de Physique et Mécanique Textiles (LPMT, UR 4365), Ecole Nationale Supérieure d’Ingénieurs Sud Alsace, Université de Haute-Alsace, Mulhouse, France

2. Hochschule Niederrhein Textil- und Bekleidungstechnik University of Applied Sciences, Mönchengladbach, Germany

Abstract

A new knitting process is presented based on a novel yarn feeding technique. It allows the knitting of new structures: single jersey on one or both needle beds and rib structure on both needle beds in the same knitting cycle, that is the same needles. The innovative knitted fabrics were compared to standard 1 × 1 rib and plain woven fabrics made from the same material. All samples were tested for physical (grammage, air permeability), morphological (number of stitches per centimetre in wale and course directions and number of stitches per square centimetre, cover factor) and mechanical (uniaxial and multidirectional tensile behaviour) properties. Grammage was used as a reference parameter to render the results comparable. The results show that the innovative fabrics are less stretchable than the standard knitted fabrics, especially in the course direction, therefore more rigid in this direction. Furthermore, they can be mechanically balanced in course and wale directions, which is unexpected for knitted fabrics. The innovative knitted fabrics are thicker than the standard knitted fabrics for the same grammage and have a lower number of stitches per square centimetre, enabling higher production rates. Due to their lower cover factor, the innovative fabrics are expected to be easier to impregnate by resin for composite applications than the standard knitted fabrics. Based on these results and the ability to increase knitting productivity, we conclude that that this novel process can transform future processes and open the door to new markets and applications.

Funder

European Regional Development Fund

Publisher

SAGE Publications

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3