Three-dimensional analysis model of electric heating fabrics considering the skin metabolism

Author:

Li Xiao1ORCID,Kuai Bo1,Tu Xikai1,Tan Jiahao2,Zhou Xuan1

Affiliation:

1. Hubei University of Technology, Wuhan, China

2. Huazhong University of Science and Technology, Wuhan, China

Abstract

In low temperature environment, electric heating clothing can provide extra heat for human body through built-in heat source, so it has better thermal insulation effect. The thermal analysis is the initial step for electric heating clothing design. The current thermal analysis of electric heating textiles focuses on the fabric itself instead of the effect of skin tissue metabolism and heat production. In order to improve the accuracy of skin surface temperature prediction, the biological heat transfer need be modeled to analyze the internal temperature distribution of the heating suit system. In this paper, a three-dimensional (3D) thermal analysis model of electric heating clothing combined with human skin tissue is established. Firstly, the coupling analysis of Fourier heat conduction and Pennes biological heat transfer equation is carried out. Then the reliability of the 3D thermal analysis model is verified by finite element analysis (FEA). The results show that the fitting error between the three-dimensional model analysis data and FEA simulation data is 5°C, which proves that the model can accurately predict the system temperature. Finally, we make further research about the effects of ambient temperature, clothing layer thickness, and input power on the maximum skin surface temperature. This study provides theoretical foundation for the design of wearable thermal management fabric.

Funder

national natural science foundation of china

Publisher

SAGE Publications

Subject

General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3