Punching trajectory optimization method for warp-knitted vamp based on improved ant colony optimization algorithm and Radau pseudospectral method

Author:

Xinfu Chi1ORCID,Qiyang Li1ORCID,Xiaowei Zhang1,Yize Sun1

Affiliation:

1. College of Mechanical Engineering, Donghua University, Shanghai, China

Abstract

Aiming at the problems of complex trajectory, low efficiency and high operational difficulty of the robot in multi-point punching of warp-knitted vamp, a method of optimizing punching trajectory based on improved ant colony optimization algorithm and Radau pseudospectral method is proposed. After obtaining the position coordinates of punching points, an improved ant colony optimization algorithm is used to calculate the punching sequence of the shortest path through all punching points, and then Radau pseudospectral method is used to solve the optimal trajectory of the laser punching robot. Improved ant colony optimization algorithm combines a distributed calculation method and the positive feedback mechanism. Radau pseudospectral method can transform the optimal control problems into nonlinear programming problems, and the combination of the two can quickly and reliably obtain the optimal solution. To verify the method, under the condition of selecting the same number and location of punching points, the experiments of Radau pseudospectral method to solve the trajectory planning of laser punching robot is carried out. The experimental results show that improved ant colony optimization algorithm can calculate the path of the vamp punching point in a shorter time and with high accuracy. Radau pseudospectral method can obtain smooth trajectories satisfying various constraints, which can meet the requirements of accuracy and efficiency in practical production.

Funder

National Key R&D Program of China

fundamental research funds for the central universities

Publisher

SAGE Publications

Subject

General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3