Method of Mesh Fabric Defect Inspection Based on Machine Vision

Author:

Sun Guodong1,Li Huan1,Dai Xin1,Zhao Daxing1,Feng Wei1

Affiliation:

1. Hubei University of Technology, Wuhan, Hubei Province CHINA

Abstract

An appearance defect online inspection system of mesh fabric has been developed based on machine vision. The mean filter method is adopted to eliminate noise. An adaptive threshold method based on brightness is presented to eliminate the effects of uneven illumination and separate the foreground and background. By analyzing the texture characteristics and defect features of mesh fabric, the mesh fabric defect identification method based on texture features is proposed. The results have shown when the online inspection speed reaches 60m/min, the defect recognition rate can reach 95% or more and the online inspection system can meet the automation requirements of enterprises quite well.

Publisher

SAGE Publications

Subject

General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Evaluation of human factors on visual inspection skills in textiles and clothing: A statistical approach;Journal of Engineered Fibers and Fabrics;2022-01

2. Particle Swarm Optimization Based Optimization for Industry Inspection;Handbook of Nature-Inspired Optimization Algorithms: The State of the Art;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3