Fabric defect detection using the improved YOLOv3 model

Author:

Jing Junfeng1ORCID,Zhuo Dong1,Zhang Huanhuan1,Liang Yong1,Zheng Min1

Affiliation:

1. Xi’an Polytechnic University, Xi’an, China

Abstract

To improve the detection rate of defect and the fabric product quality, a higher real-time performance fabric defect detection method based on the improved YOLOv3 model is proposed. There are two key steps: first, on the basis of YOLOv3, the dimension clustering of target frames is carried out by combining the fabric defect size and k-means algorithm to determine the number and size of prior frames. Second, the low-level features are combined with the high-level information, and the YOLO detection layer is added on to the feature maps of different sizes, so that it can be better applied to the defect detection of the gray cloth and the lattice fabric. The error detection rate of the improved network model is less than 5% for both gray cloth and checked cloth. Experimental results show that the proposed method can detect and mark fabric defects more effectively than YOLOv3, and effectively reduce the error detection rate.

Funder

scientific research and sharing platform construction project of shaanxi province

National Natural Science Foundation of China

the Key Research and Development Program of Shaanxi Province

shaanxi university of science and technology

Shaanxi Provincial Association of Science and Technology Young Talents Promotion Program

xi’an polytechnic university

Publisher

SAGE Publications

Subject

General Materials Science

Cited by 76 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3