Affiliation:
1. Seoul National University, Gwanak Gu, Seoul KOREA
2. Kansas State University, Department of Apparel, Textiles, and Interior Design, Manhattan, KS UNITED STATES
Abstract
The objective of this study was to develop a breathable and antistatic superhydrophobic PET/lyocell fabric by simple finishing with polymeric fluorocarbon siloxane. To find an optimum concentration of the finish agent, four different concentrations of fluorocarbon finish agent were applied on three different types of fabrics; lyocell 100%, PET 100%, and PET/lyocell blend (50%/50%). Static water contact angle (WCA), shedding angle, and water repellency tests were measured to evaluate the wettability and hydrophobicity of treated fabrics. A PET/lyocell blend fabric treated with 40 g/L fluorocarbon finish agent exhibited superhydrophobic characteristics with WCA of 153.6° and shedding angle of 9.5° resulting from its lowed surface energy and multi-scale roughness. The effects of fluorocarbon finish on fabric moisture regain, electrostatic property, water vapor transmission rate (WVTR), and air permeability were evaluated as parameters for clothing comfort. PET/lyocell blend fabric treated with fluorocarbon exhibited significantly lower static electricity and higher moisture regain than the treated PET fabric. WVTR and air permeability were maintained after the finish. The blended fabric achieved noteworthy combination of antistatic and superhydrophobic properties. The functionality of finished PET and PET/lyocell fabrics, measured by WCA, shedding angle, and water repellency rate, was maintained until 10 washing cycles.
Subject
General Materials Science
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献