Ultrahydrophobic Textiles Using Nanoparticles: Lotus Approach

Author:

Ramaratnam Karthik1,Iyer Swaminatha K.1,Kinnan Mark K.2,Chumanov George2,Brown Phillip J.1,Luzinov Igor1

Affiliation:

1. School of Materials Science and Engineering, Clemson University, Clemson, South Carolina, USA

2. Department of Chemistry, Clemson University, Clemson, South Carolina, USA

Abstract

It is well established that the water wettability of materials is governed by both the chemical composition and the geometrical microstructure of the surface.1 Traditional textile wet processing treatments do indeed rely fundamentally upon complete wetting out of a textile structure to achieve satisfactory performance.2 However, the complexities introduced through the heterogeneous nature of the fiber surfaces, the nature of the fiber composition and the actual construction of the textile material create difficulties in attempting to predict the exact wettability of a particular textile material. For many applications the ability of a finished fabric to exhibit water repellency (in other words low wettability) is essential2 and potential applications of highly water repellent textile materials include rainwear, upholstery, protective clothing, sportswear, and automobile interior fabrics. Recent research indicates that such applications may benefit from a new generation of water repellent materials that make use of the “lotus effect” to provide ultrahydrophobic textile materials.3,4 Ultrahydrophobic surfaces are typically termed as the surfaces that show a water contact angle greater than 150°C with very low contact angle hysteresis.4 In the case of textile materials, the level of hydrophobicity is often determined by measuring the static water contact angle only, since it is difficult to measure the contact angle hysteresis on a textile fabric because of the high levels of roughness inherent in textile structures.

Publisher

SAGE Publications

Subject

General Materials Science

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3