Fabric defect fetection via weighted low-rank decomposition and Laplacian regularization

Author:

Ji Xuan1ORCID,Liang Jiuzhen1,Di Lan2,Xia Yunfei3,Hou Zhenjie1,Huan Zhan1,Huan Yuxi4

Affiliation:

1. School of Computer Science and Artificial Intelligence, Changzhou University, Changzhou, China

2. School of Digital Media, Jiangnan University, Wuxi, China

3. Department of Mathematics and Statistics, University of North Carolina at Charlotte, USA

4. School of Modern Service Industry, Changzhou College of Information Technology, Changzhou, China

Abstract

Low-rank decomposition models have potential for fabric defect detection, where a feature matrix is decomposed into a low-rank matrix that corresponding to repeated texture structure and a sparse matrix that represent defective regions. Two limitations, however, still exist. First, previous work might fail to detect some large homogeneous defective block. Second, when the background and defective regions are relatively coherent or the texture of fabric image is complex, it is difficult to use previous methods to separate them. To deal with these problems, a new weighted low-rank decomposition model with Laplace regularization (WLRL) is proposed in this paper: (1) a weighted low-rank decomposition model that can decompose the original image into background and defective regions, and (2) a Laplace regularization that can enlarge the distance between the background and the defective regions. The performance of the proposed method WLRL is evaluated on the box- and star-patterned fabric databases, and superior results are shown compared with state-of-the-art methods, that is, 98.70% ACC (accuracy) and 72.83% TPR (true positive rate) for box-patterned fabrics, 99.09% ACC (accuracy) and 83.63% TPR (true positive rate) for star-patterned fabrics.

Funder

zhejiang province public welfare technology application research project

Postgraduate Research & Practice Innovation Program of Jiangsu Province

Publisher

SAGE Publications

Subject

General Materials Science

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3