The surface modification by O2 low temperature plasma to improve dyeing properties of Rex rabbit fibers

Author:

Su Ting1,Han Ying1,Liu Hongyan2,Li Lixin1,Zhang Zongcai2,Li Zhengjun2

Affiliation:

1. College of Chemistry, Sichuan University, Chengdu, China

2. National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu, China

Abstract

Dyeability of the fiber plays a very important role in the textile industry. The presence of cuticle scales on the surface of Rex rabbit fibers brings difficulties to dyeing process. In this study, O2 low temperature plasma was used to improve the dyeability of Rex rabbit fibers and the two key parameters including the treating time and discharge power were optimized during O2 low temperature plasma treatment. The impact of plasma treatment on the surface morphology, physical-chemical properties, and dyeing behavior of Rex rabbit fibers using anionic dyes were investigated by a series of characterization methods such as scanning electron microscopy, atomic force microscopy, Fourier transform infrared–attenuated total reflection, and X-ray photoelectron spectroscopy. The surface dyeability and color fastness were studied by K/S measurement and washing fastness, respectively. The influence of O2 low temperature plasma treatment on the mechanical properties of Rex rabbit fibers was inspected by the tensile strength measurement. The wettability of the samples was evaluated in terms of wetting time and contact angle. The O2 low temperature plasma treatment resulted in a dramatic improvement in wettability of Rex rabbit fibers. X-ray photoelectron spectroscopy and Fourier transform infrared–attenuated total reflection analysis show that oxygen plasma treatment led to a significant increase in the content of sulfur oxides and polar groups such as (–C=O, –OH, and –NH2) on the fiber surface and resulted in reinforced wettability, dyeing rate and dyeing fixation of Rex rabbit fibers.

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3