Fatigue life prediction of 3D braided carbon/carbon composites with braided angle variation at elevated temperature

Author:

Yang Xinglin1,Zhang Shengyu1ORCID,Chen Bo1,Ma Bingjie2,Xing Xue2

Affiliation:

1. School of Energy and Power, Jiangsu University of Science and Technology, Zhenjiang, China

2. Shanghai Marine Diesel Engine Research Institute, Shanghai, China

Abstract

The braiding angle of 3D braided carbon/carbon composites (C/CCs) will change during high temperature fatigue loading, which will affect the fatigue properties of 3D braided C/CCs. In order to realize this dynamic simulation in the high temperature fatigue life prediction of 3D braided C/CCs and further improve the prediction accuracy of high temperature fatigue life of 3D braided C/CCs, a high temperature fatigue life prediction model of 3D braided C/CCs considering the change of braiding angle with fatigue cycle number was established. The establishment of the prediction model mainly includes: a meso-scale representative volume elements (RVEs) of 3D braided C/CCs considering yarn direction and fiber bundle cross-section shape is established at the meso-scale; the high temperature residual stiffness and residual strength models of fiber bundles considering high temperature and stress level are established. Based on the experimental data characteristics of high temperature fatigue residual stiffness of 3D braided C/CCs, a mathematical model of cycle number/braided angles (CN/BAs) is established. The fatigue life prediction model was used to predict the 3D braided C/CCs at 700°C and stress levels of 87% and 85%. The results showed that the prediction error of single flower node was less than 5%. The fatigue life prediction error is less than two times the tolerance.

Funder

jiangsu university of science and technology

Publisher

SAGE Publications

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3